Restriction mapping in nanofluidic devices.
نویسندگان
چکیده
We have performed restriction mapping of DNA molecules using restriction endonucleases in nanochannels with diameters of 100-200 nm. The location of the restriction reaction within the device is controlled by electrophoresis and diffusion of Mg2+ and EDTA. We have successfully used the restriction enzymes SmaI, SacI, and PacI, and have been able to measure the positions of restriction sites with a precision of approximately 1.5 kbp in 1 min using single DNA molecules.
منابع مشابه
Single-molecule denaturation mapping of DNA in nanofluidic channels.
Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent "barcode" corresponding to a series of local dips and peaks in the intensity trace along the extended molecule. We demonstrate that this structure arises fr...
متن کاملHigh throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies.
An easy method is introduced allowing fast polydimethylsiloxane (PDMS) replication of nanofluidic lab-on-chip devices using accurately fabricated molds featuring cross-sections down to 60 nm. A high quality master is obtained through proton beam writing and UV lithography. This master can be used more than 200 times to replicate nanofluidic devices capable of handling single DNA molecules. This...
متن کاملEfficient prototyping of large-scale pdms and silicon nanofluidic devices using pdms-based phase-shift lithography
In this study, we explore the potential of Poly-DiMethylSiloxane (PDMS)-based phase shift lithography (PPSL) for the fabrication of nanofluidic devices. We establish that this technology, which was already shown to allow for the generation of 100 nm linear or punctual features over cm surfaces with conventional photolithography systems, is readily adequate to produce some of the most popular na...
متن کاملDirect optical mapping of transcription factor binding sites on field-stretched λ-DNA in nanofluidic devices
Mapping transcription factor (TF) binding sites along a DNA backbone is crucial in understanding the regulatory circuits that control cellular processes. Here, we deployed a method adopting bioconjugation, nanofluidic confinement and fluorescence single molecule imaging for direct mapping of TF (RNA polymerase) binding sites on field-stretched single DNA molecules. Using this method, we have ma...
متن کاملComplete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps.
Development of all polymer-based nanofluidic devices using replication technologies, which is a prerequisite for providing devices for a larger user base, is hampered by undesired substrate deformation associated with the replication of multi-scale structures. Therefore, most nanofluidic devices have been fabricated in glass-like substrates or in a polymer resist layer coated on a substrate. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 29 شماره
صفحات -
تاریخ انتشار 2005